Contribution of the nos-pdt Operon to Virulence Phenotypes in Methicillin-Sensitive Staphylococcus aureus
نویسندگان
چکیده
Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential relationship between these two enzymes remains to be elucidated.
منابع مشابه
Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus
Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...
متن کاملMethicillin resistance and the biofilm phenotype in Staphylococcus aureus
Antibiotic resistance and biofilm-forming capacity contribute to the success of Staphylococcus aureus as a human pathogen in both healthcare and community settings. These virulence factors do not function independently of each other and the biofilm phenotype expressed by clinical isolates of S. aureus is influenced by acquisition of the methicillin resistance gene mecA. Methicillin-sensitive S....
متن کاملشناسایی ژنهای حدت پنتون والنتین لوکوسیدین (PVL) و مقاومت به متیسیلین (mecA ) در استافیلوکوکوس اورئوس جدا شده از نمونههای بالینی: یک گزارش کوتاه
Background and Objective: Staphylococcus aureus is a major pathogen of human in the world. Methicillin-resistant Staphylococcus aureus is associated with nosocomial infections. Recently, staphylococcal infections have been associated with the community. The purpose of this study was to isolate and identify Staphylococcus aureus virulence Panton-Valentine leukocidin (PVL) and methicillin...
متن کاملStatus of Biofilm-Forming Genes among Jordanian Nasal Carriers of Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus
Introduction: Biofilm formation in Staphylococcus aureus is a major virulence factor. Both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are common causes of community- and hospital-acquired infections and are associated with biofilm formation. The status of biofilm-forming genes has not been explored in Jordanian nasal carriers of S. ...
متن کاملComparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100.
Proteomics is a powerful tool for analysing differences in gene expression between bacterial strains with alternate phenotypes. Staphylococcus aureus strains are grouped on the basis of their sensitivity to methicillin. Two-dimensional gel electrophoresis was combined with MS to compare the protein profiles of S. aureus strains COL (methicillin-resistant) and 8325 (methicillin-sensitive). Refer...
متن کامل